Inorganic Chemistry

A "Strongly" Self-Catenated Metal−Organic Framework with the Highest Topological Density among 3,4-Coordinated Nets

Huiqing Ma,† Di Sun,† Liangliang Zhang,‡ Rongming Wang,‡ Vladislav A. Blatov,*,§,[∥] Jie Guo,† and Daofeng Sun*,†,‡

† Key Lab for Colloid [an](#page-2-0)d Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China

§ Department of Chemistry, Samara State University, Ac. Pavlov St. 1, Samara 443011, Russia

‡ College of Science, China University of Petroleum (East China), Qingdao Shandong 266555, People's Republic of China ∥ Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

S Supporting Information

[AB](#page-2-0)STRACT: [A](#page-2-0) [new](#page-2-0) [type](#page-2-0) [o](#page-2-0)f 3D "strongly" self-catenated metal−organic framework (SDU-9) has been constructed from $\lceil \text{Cu}_2(\text{COO})_4 \rceil$ paddlewheel secondary building units and a tripodal carboxylate linker. SDU-9 ($\left[\text{Cu}_{6}(\text{H}_{2}\text{O})_{6}\text{L}_{4}\right]$ · 24H₂O, where $[H_3L = 4,4',4''-(hydroxysilanetry])$ tris-(triphenyl-4-carboxylic acid), represents a rare example of a highly symmetrical coordination network and extremely tight self-catenation. To the best of our knowledge, SDU-9 has the highest topological density among all known 3,4-coordinated nets.

Metal[−]organic frameworks (MOFs) have caused an Lupsurge of interest not only for their potential applications in gas adsorption, catalysis, ion exchange, biomedical applications, etc.,^{1−6} but also for their intriguing variety of architectures and topologies.^{4a,7} The network topological approach proposed by W[ell](#page-2-0)s^{[8](#page-2-0)} is an important and essential aspect of the analysis, comparison, and [de](#page-2-0)sign of MOFs by reducing multidimensional structure[s](#page-2-0) to simple node-and-connection reference nets. In the past decade, many structural types and entanglement topological features unprecedented in the world of inorganic compounds and minerals have been unmasked in the MOF field.⁹ Recently, Yang and co-workers described a silver coordination polymer with a record 54 interpenetrating networks, [w](#page-2-0)hich provide a new template for future highly interpenetrated or self-catenated structures.¹⁰

Among the different types of entanglements, such as interpenetration, polycatenation, polythre[adi](#page-2-0)ng, and self-catenation (other equivalent terms are self-penetration or polyknotting), interpenetrating networks are the most abundant and most comprehensively studied objects, as shown in the extensive reviews.¹¹ However, the study of self-catenated networks considered as extended periodic equivalents of molecular knots remains [l](#page-2-0)argely unexplored.^{11a} These structures are single networks with regions in which chains from the same net pass through smallest topological c[ircu](#page-2-0)its in a fashion similar to that of interpenetrating systems. Recently, uninodal (with one kind of node) self-catenated coordination networks were reviewed by Ke et al.¹² According to the list given by Batten in a web site (http:// www.chem.monash.edu.au/staff/sbatten/interpen/examples7.

html), a few examples of self-catenated networks with nodes of different connectivity such as $4,4,$ ¹³ 3,5-,¹⁴ 3,6-,¹⁵ and 3,12[conn](http://www.chem.monash.edu.au/staff/sbatten/interpen/examples7.html)ections¹⁶ have been observed; however, reports on a selfcatenated 3,4-coordinated networ[k a](#page-2-0)re q[uit](#page-2-0)e rar[e.](#page-2-0) Mu et al. reported an [un](#page-2-0)usual 3,4-coordinated self-catenated network that can be viewed as the cross-linking of a $2D + 2D \rightarrow 3D$ inclined polycatenation.¹⁷ Similarly, most of the self-catenated networks can be represented as interweaved arrays of 2D or 3D individual equivalent co[mpo](#page-2-0)nents after breaking some edges,¹⁸ which we call the "weakly" self-catenated nets, in order to discriminate the net reported here. Generally, most reported self-ca[ten](#page-2-0)ated nets are constructed from flexible organic ligands; reports on rigid carboxylate ligands are somewhat rare. To construct such selfcatenated nets, the conformation and linking mode of the organic ligand seem very important.

Recently, we reported a series of porous 3,24-coordinated rhttype MOFs based on C_{3v} -symmetry silicon-based hexatopic carboxylate linkers.¹⁹ According to the TOPOS TTD collec- $\{\text{tion},\text{11b}\}$ in total there are 20 examples of rht-type coordination networks, the fir[st](#page-2-0) of which were synthesized in 2008. Dev[elo](#page-2-0)ping our previous results, in this work, we have synthesized a new tripodal organic ligand, 4,4′,4″- (hydroxysilanetriyl)tris(triphenyl-4-carboxylic acid) (H_3L) . Surprisingly, the solvothermal assembly of H_3L and copper paddlewheel secondary building units (SBUs) resulted in the formation of a novel "strongly" self-catenated MOF $([Cu₆(H₂O)₆L₄]\cdot 24H₂O$, which is quite different from other MOFs based on tripodal carboxylate ligands and paddlewheel SBUs.

The solvothermal reaction of $Cu(NO₃)₂·6H₂O$ with $H₃L$ (Figure 1a) in N,N-dimethylformamide/ethanol/water [1:1:1 $(v/v/v)$, 10 mL] at 75 °C for 2000 min yields cubic green crystals of SDU[-9](#page-1-0). Single-crystal X-ray diffraction analysis reveals that SDU-9 crystallizes in the chiral cubic space group F432. Two copper ions are bridged by four carboxylates to form the wellknown paddlewheel $\left[\text{Cu}_2(\text{COO})_4\right]$ SBU (Figure 1b). Each SBU connects four organic ligands, and each ligand binds three SBUs to form a 3D 3,4-coordinated self-catenated M[O](#page-1-0)F containing right-handed helices along the [1,0,1] direction (Figure 1d). The

Received: July 23, 2013 Published: September 23, 2013

Figure 1. (a) Organic ligand used in this work. (b) Coordination environment of Cu^{II} ions in SDU-9 with thermal ellipsoids at the 50% probability level. Hydrogen atoms were omitted for clarity. (c) Connection type between the helical chains (viewed along the [0,1,− 1] direction). (d) Perspective view of the helical chain along the [1,0,1] direction in SDU-9 (top) and the 1D channel (bottom). (e) 3D packing of SDU-9 along [1,0,0] direction.

connection type between the helices is different (Figure 1c): one is connected through the $[Cu_2(COO)_4]$ SBU, and the other is linked through the silicon atom.

To perform topological analysis of the 3D architecture, we have used the TOPOS program package.²⁰ Topologically, by regarding each Cu₂-SBU as a 4-coordinated node (Figure 2) and

Figure 2. Schematic representation of the 3D framework of SDU-9, where the purple balls are the simplified paddlewheel units.

each L as a 3-coordinated node (Figure 2), the overall 3D net can be rationalized as a binodal 3,4-coordinated edge-transitive (with one kind of edge) underlying net (i.e., the net of centroids of structural groups) with the point symbol²¹ of $(12^3)_{4}(12^6)_{3}$ (Figure 2). It is striking that this net has collisions; i.e., some of its vertices have coordinates that are [the](#page-2-0) average of the coordinates of their neighbors.^{11c,d} This feature is quite rare for the underlying nets.^{11c} Topological classification with the TOPOS TTD collection reve[aled](#page-2-0) that such a net has never been found in cryst[als;](#page-2-0) we have deposited it into the TTD collection under the name sdf1. Further analysis showed that there are four kinds of 12-rings in this 3D framework (Figure S4 in the Supporting Information). Each ring consists of six $Cu₂$ -SBUs that are connected by six halves of organic ligands.

The [most fascinating and pec](#page-2-0)uliar structural feature of SDU-9 is that all of the rings are catenated together, coming to a complete framework. Because the underlying net is edgetransitive (all edges are equivalent by symmetry), it cannot be naturally split into separate interpenetrating 2D or 3D nets; after breaking any edge, one obtains an unconnected structure. Hence, we call such self-catenation "strong". The self-catenation is extremely tight: each 12-ring is crossed by more than 100 other 12-rings. Figure 3 demonstrates the unprecedented complexity

Figure 3. (left) One of the 12-rings (12b, in blue) catenated by 176 other 12-rings in the underlying net sdf1 of SDU-9. (right) One of the 174 simple links between the 12-rings and one of two multilinks.

of self-catenation: all depicted nodes of the underlying net belong to the 176 12-rings that catenate the same (blue) 12-ring. Besides simple (Hopf-type) links between 12-rings, there are a few multilinks (also known as Solomon links)²² that are rare in selfcatenated coordination networks (Figure 3). This tight selfcatenation causes a high topological densi[ty](#page-2-0) 23 of the net, TD $_{10}$ = 3245; according to the RCSR database, 24 to the best of our knowledge, this is the highest topologica[l d](#page-2-0)ensity among all known 3,4-coordinated nets.

On the basis of the calculation from the PLATON/VOID routine, 25 the total solvent-accessible volume for the desolvated framework after removal of guest solvents and coordinated water molecu[les](#page-2-0) is estimated to be 35.9%. To check the permanent porosities of SDU-9, the freshly prepared samples were soaked in methanol and dichloromethane to exchange the less volatile solvent molecules. A color change from bright-blue to bluegreen, indicating that open Cu^H sites similar to those observed for other frameworks have been generated.¹⁸ As shown in Figure 4, desolvated crystal SDU-9 displays a typical type IV adsorption

Figure 4. N_2 sorption isotherms at 77 K (solid circles, adsorption; open circles, desorption).

isotherm. This may derive from the flexibility of the selfcatenated net, which causes dislocation moves of the framework upon an increase of the pressure, as found in other soft porous MOFs.²⁶ The Brunauer−Emmett−Teller surface area of SDU-9 is 332.8 m^2 g⁻¹ calculated from these data.

In summary, a 3D $(12^3)_{4}(12^6)_{3}$ coordination network with high topological density and extremely tight self-catenation of 12-rings has been obtained based on $\lceil Cu_2(COO)_4 \rceil$ paddlewheel SBUs and a tripodal carboxylate linker. The self-catenation is "strong"; i.e., the network cannot be transformed into an array of interpenetrating nets by breaking any chemical bond.

■ ASSOCIATED CONTENT

6 Supporting Information

X-ray crystallographic data in CIF format, detailed synthetic procedures, IR and TGA for the compounds, and additional graphics. This material is available free of charge via the Internet at http://pubs.acs.org.

■ [AUTHOR INFOR](http://pubs.acs.org)MATION

Corresponding Authors

*E-mail: blatov@samsu.ru.

*E-mail: dfsun@sdu.edu.cn.

Funding

This wor[k was supported b](mailto:dfsun@sdu.edu.cn)y the NSFC (Grants 21001115 and 21271117), NCET-11-0309 and the Shandong Natural Science Fund for Distinguished Young Scholars (JQ201003), and the Fundamental Research Funds for the Central Universities (Grants 13CX05010A and 13CX02006A).

Notes

The authors declare no competing financial interest.

■ REFERENCES

(1) (a) Zhou, H. C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673. (b) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Chem. Rev. 2012, 112, 782. (c) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012, 112, 724. (d) Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q. Chem. Rev. 2012, 112, 703.

(2) (a) Farha, O. K.; Ö zgü r Yazaydın, A.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. Nat. Chem. 2010, 2, 944. (b) Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; DuChene, J. S.; Zhang, H.; Zhang, Q.; Chen, X.; Ma, J.; Loo, S. C.; Wei, W. D.; Yang, Y.; Hupp, J. T.; Huo, F. Nat. Chem. 2012, 4, 310. (c) McKinlay, R. M.; Cave, G. W. V.; Atwood, J. L. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 5944.

(3) (a) Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1213. (b) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232. (c) Corma, A.; Garcia, H.; Xamena, F. X. L. Chem. Rev. 2010, 110, 4606. (d) Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Chem. Rev. 2012, 112, 1126. (e) Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196.

(4) (a) Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705. (b) Müller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. J. Mater. Chem. 2006, 16, 626. (c) Dinca, M.; Long, J. R. Angew. Chem., Int. Ed. 2008, 47, 6766.(d) Czaja, A. U.; Trukhan, N.; Müller, U. Chem. Soc. Rev. 2009, 38, 1284.

(5) (a) Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248. (b) Czaja, A. U.; Trukhan, N.; Müller, U. Chem. Soc. Rev. 2009, 38, 1284. (c) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Chem. Soc. Rev. 2009, 38, 1330.

(6) (a) Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W. S.; Withersby, M. A.; Schrö der, M. Coord. Chem. Rev. 1999, 183, 117.

- (b) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629. (c) Hagrman, P. J.; Hagrman, D.; Zubieta, J. Angew. Chem., Int. Ed. 1999, 38, 2638.
- (7) Hill, R. J.; Long, D. L.; Champness, N. R.; Hubberstey, P.; Schröder, M. Acc. Chem. Res. 2005, 38, 335.
- (8) Wells, A. F. Three-dimensional Nets and Polyhedra; Wiley-Interscience, New York, 1977.

(9) (a) Batten, S. R.; Robson, R. Angew. Chem., Int. Ed. 1998, 37, 1460. (b) Batten, S. R. CrystEngComm 2001, 3, 67.

(10) Wu, H.; Yang, J.; Su, Z. M.; Batten, S. R.; Ma, J. F. J. Am. Chem. Soc. 2011, 133, 11406.

(11) (a) Carlucci, L.; Ciani, G.; Proserpio, D. M. Coord. Chem. Rev. 2003, 246, 247. (b) Alexandrov, E. V.; Blatov, V. A.; Kochetkov, A. V.; Proserpio, D. M. CrystEngComm 2011, 13, 3947. (c) Delgado-Friedrichs, O.; Foster, M. D.; O'Keeffe, M.; Proserpio, D. M.; Treacy, M. M. J.; Yaghi, O. M. J. Solid State Chem. 2005, 178, 2533. (d) Delgado-Friedrichs, O.; O'Keeffe, M. Acta Crystallogr., Sect. A 2003, 59, 351.

(12) Ke, X. J.; Li, D. S.; Du, M. Inorg. Chem. Commun. 2011, 14, 788 and references cited therein.

- (13) Eckhardt, R. H.; Heidl, H.; Fischer, R. D. Chem.-Eur. J. 2003, 9, 1795.
- (14) Sava, D. F.; Rohwer, L.; Rodriguez, E. S.; Nenoff, M. A. J. Am. Chem. Soc. 2012, 134, 3983.
- (15) Schareina, T.; Schick, C.; Abrahams, B. F.; Kempe, Z. R. Anorg. Allg. Chem. 2001, 627, 1711.
- (16) Li, D. S.; Zhang, P.; Zhao, J.; Fang, Z. F.; Du, M.; Zou, K.; Mu, Y. Q. Cryst. Growth Des. 2012, 12, 1697.

(17) Carlucci, L.; Ciani, G.; Moret, M.; Proserpio, D. M.; Rizzato, S. Angew. Chem., Int. Ed. 2000, 39, 1506.

(18) Sun, D.; Ma, S.; Ke, Y.; Collins, D. J.; Zhou, H. C. J. Am. Chem. Soc. 2006, 128, 3896.

(19) Zhao, X. L.; Sun, D.; Yuan, S. A.; Feng, S. Y.; Cao, R.; Yuan, D. Q.; Wang, S. N.; Dou, J. M.; Sun, D. F. Inorg. Chem. 2012, 51, 10350.

(20) Blatov, V. A. Struct. Chem. 2012, 23, 955; see also http://www. topos.samsu.ru.

(21) Blatov, V. A.; O'Keeffe, M.; Proserpio, D. M. C[rystEngComm](http://www.topos.samsu.ru) 2010, 12, 44.

- [\(22\) Forgan, R](http://www.topos.samsu.ru). S.; Sauvage, J.-P.; Stoddart, J. F. Chem. Rev. 2011, 111, 5434.
- (23) O'Keeffe, M. Z. Kristallogr. 1991, 196, 21.

(24) O'Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. Acc.

- Chem. Res. 2008, 41, 1782; see also http://rcsr.anu.edu.au/.
- (25) Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7.

(26) (a) Maji, T.; Matsuda, K. R.; Kitagawa, S. Nat. Mater. 2007, 6, 142. (b) Mulfort, K. L.; Farha, O. K.; [Malliakas, C. D.; Kanatzi](http://rcsr.anu.edu.au/)dis, M. G.; Hupp, J. T. Chem.-Eur. J. 2010, 16, 276. (c) Yang, S. H.; Lin, X.; Lewis, W.; Suyetin, M.; Bichoutskaia, E.; Parker, J. E.; Tang, C. C.; Allan, D. R.; Rizkallah, P. J.; Hubberstey, P.; Champness, N. R.; Thomas, K. M.; Blake, A. J.; Schröder, S. M. *Nat. Mater*. **2012**, 11, 710.